您的位置 首页 知识分享

PyTorch 中的 CocoDetection (1)

请我喝杯咖啡☕ *备忘录: 我的帖子解释了cocodetection()使用trn2017与captions_…

请我喝杯咖啡☕

*备忘录:

  • 我的帖子解释了cocodetection()使用trn2017与captions_train2017.json,instances_train2017.json和person_keypoints_train2017.json,val2017与captions_val2017.json,instances_val2017.json和person_keypoints_val2017.json和test2017与image_info_test2017.json和image_info_test-dev2017.json.
  • 我的帖子解释了 ms coco。

cocodetection() 可以使用 ms coco 数据集,如下所示。 *这适用于带有captions_train2014.json、instances_train2014.json和person_keypoints_train2014.json的train2014,带有captions_val2014.json、instances_val2014.json和person_keypoints_val2014.json的val2014以及带有image_info_test2014.json、image_info_test2015.json和的test2017 image_info_test-dev2015.json:

*备忘录:

  • 第一个参数是root(必需类型:str或pathlib.path): *备注:
    • 这是图像的路径。
    • 绝对或相对路径都是可能的。
  • 第二个参数是 annfile(必需类型:str 或 pathlib.path): *备注:
    • 这是注释的路径。
    • 绝对或相对路径都是可能的。
  • 第三个参数是transform(optional-default:none-type:callable)。
  • 第四个参数是 target_transform(optional-default:none-type:callable)。
  • 第五个参数是transforms(optional-default:none-type:callable)。
from torchvision.datasets import CocoDetection  cap_train2014_data = CocoDetection(     root="data/coco/imgs/train2014",     annFile="data/coco/anns/trainval2014/captions_train2014.json" )  cap_train2014_data = CocoDetection(     root="data/coco/imgs/train2014",     annFile="data/coco/anns/trainval2014/captions_train2014.json",     transform=None,     target_transform=None,     transforms=None )  ins_train2014_data = CocoDetection(     root="data/coco/imgs/train2014",     annFile="data/coco/anns/trainval2014/instances_train2014.json" )  pk_train2014_data = CocoDetection(     root="data/coco/imgs/train2014",     annFile="data/coco/anns/trainval2014/person_keypoints_train2014.json" )  len(cap_train2014_data), len(ins_train2014_data), len(pk_train2014_data) # (82783, 82783, 82783)  cap_val2014_data = CocoDetection(     root="data/coco/imgs/val2014",     annFile="data/coco/anns/trainval2014/captions_val2014.json" )  ins_val2014_data = CocoDetection(     root="data/coco/imgs/val2014",     annFile="data/coco/anns/trainval2014/instances_val2014.json" )  pk_val2014_data = CocoDetection(     root="data/coco/imgs/val2014",     annFile="data/coco/anns/trainval2014/person_keypoints_val2014.json" )  len(cap_val2014_data), len(ins_val2014_data), len(pk_val2014_data) # (40504, 40504, 40504)  test2014_data = CocoDetection(     root="data/coco/imgs/test2014",     annFile="data/coco/anns/test2014/image_info_test2014.json" )  test2015_data = CocoDetection(     root="data/coco/imgs/test2015",     annFile="data/coco/anns/test2015/image_info_test2015.json" )  testdev2015_data = CocoDetection(     root="data/coco/imgs/test2015",     annFile="data/coco/anns/test2015/image_info_test-dev2015.json" )  len(test2014_data), len(test2015_data), len(testdev2015_data) # (40775, 81434, 20288)  cap_train2014_data # Dataset CocoDetection #     Number of datapoints: 82783 #     Root location: data/coco/imgs/train2014  cap_train2014_data.root # 'data/coco/imgs/train2014'  print(cap_train2014_data.transform) # None  print(cap_train2014_data.target_transform) # None  print(cap_train2014_data.transforms) # None  cap_train2014_data.coco # <pycocotools.coco.COCO at 0x7c8a5f09d4f0>  cap_train2014_data[26] # (<PIL.Image.Image image mode=RGB size=427x640>, #  [{'image_id': 154, 'id': 202466, #    'caption': 'three zeebras standing in a grassy field walking'}, #   {'image_id': 154, 'id': 211904, #    'caption': 'Three zebras are standing in an open field.'}, #   {'image_id': 154, 'id': 215654, #    'caption': 'Three zebra are walking through the grass of a field.'}, #   {'image_id': 154, 'id': 216620, #    'caption': 'Three zebras standing on a grassy dirt field.'}, #   {'image_id': 154, 'id': 231686, #    'caption': 'Three zebras grazing in green grass field area.'}])  cap_train2014_data[179] # (<PIL.Image.Image image mode=RGB size=480x640>, #  [{'image_id': 1330, 'id': 721877, #    'caption': 'a young guy walking in a forrest holding ... his hand'}, #   {'image_id': 1330, 'id': 727442, #    'caption': 'A partially black and white photo of a ... the woods.'}, #   {'image_id': 1330, 'id': 730133, #    'caption': 'A disc golfer releases a throw ... wooded course.'}, #   {'image_id': 1330, 'id': 731450, #    'caption': 'The person is in the clearing of a wooded area. '}, #   {'image_id': 1330, 'id': 732335, #    'caption': 'a person throwing a frisbee at many trees '}])  cap_train2014_data[194] # (<PIL.Image.Image image mode=RGB size=428x640>, #  [{'image_id': 1407, 'id': 451510, #    'caption': 'A person on a court with a tennis racket.'}, #   {'image_id': 1407, 'id': 457735, #    'caption': 'A man that is holding a racquet ... the grass.'}, #   {'image_id': 1407, 'id': 460600, #    'caption': 'A tennis player hits the ball during a match.'}, #   {'image_id': 1407, 'id': 460612, #    'caption': 'The tennis player is poised to serve a ball.'}, #   {'image_id': 1407, 'id': 821947, #    'caption': 'Man in white playing tennis on a court.'}])  ins_train2014_data[26] # (<PIL.Image.Image image mode=RGB size=427x640>, #  [{'segmentation': [[229.5, 618.18, 235.64, ..., 219.85, 618.18]], #    'area': 53702.50415, 'iscrowd': 0, 'image_id': 154, #    'bbox': [11.98, 315.59, 349.08, 324.41], 'category_id': 24, #    'id': 590410}, #   {'segmentation': ..., 'category_id': 24, 'id': 590623}, #   {'segmentation': ..., 'category_id': 24, 'id': 593205}])  ins_train2014_data[179] # (<PIL.Image.Image image mode=RGB size=480x640>, #  [{'segmentation': [[160.87, 574.0, 174.15, ..., 162.77, 577.6]], #    'area': 21922.32225, 'iscrowd': 0, 'image_id': 1330, #    'bbox': [38.47, 228.02, 249.55, 349.58], 'category_id': 1, #    'id': 497247}, #   {'segmentation': ..., 'category_id': 34, 'id': 604179}])  ins_train2014_data[194] # (<PIL.Image.Image image mode=RGB size=428x640>, #  [{'segmentation': [[203.26, 465.95, 215.13, ..., 207.22, 466.94]],  #    'area': 20449.62315, 'iscrowd': 0, 'image_id': 1407, #    'bbox': [138.97, 198.88, 175.08, 355.11], 'category_id': 1, #    'id': 434962}, #   {'segmentation': ..., 'category_id': 43, 'id': 658155}, #   ... #   {'segmentation': ..., 'category_id': 1, 'id': 2000535}])  pk_train2014_data[26] # (<PIL.Image.Image image mode=RGB size=427x640>, [])  pk_train2014_data[179] # (<PIL.Image.Image image mode=RGB size=480x640>, #  [{'segmentation': [[160.87, 574, 174.15, ..., 162.77, 577.6]], #    'num_keypoints': 14, 'area': 21922.32225, 'iscrowd': 0, #    'keypoints': [0, 0, 0, 0, ..., 510, 2], 'image_id': 1330, #    'bbox': [38.47, 228.02, 249.55, 349.58], 'category_id': 1, #    'id': 497247}])  pk_train2014_data[194] # (<PIL.Image.Image image mode=RGB size=428x640>, #  [{'segmentation': [[203.26, 465.95, 215.13, ..., 207.22, 466.94]], #    'num_keypoints': 16, 'area': 20449.62315, 'iscrowd': 0, #    'keypoints': [243, 289, 2, 247, ..., 516, 2], 'image_id': 1407, #    'bbox': [138.97, 198.88, 175.08, 355.11], 'category_id': 1, #    'id': 434962}, #   {'segmentation': ..., 'category_id': 1, 'id': 1246131}, #   ... #   {'segmentation': ..., 'category_id': 1, 'id': 2000535}])  cap_val2014_data[26] # (<PIL.Image.Image image mode=RGB size=640x360>, #  [{'image_id': 428, 'id': 281051, #    'caption': 'a close up of a child next to a cake with balloons'}, #   {'image_id': 428, 'id': 283808, #    'caption': 'A baby sitting in front of a cake wearing a tie.'}, #   {'image_id': 428, 'id': 284135, #    'caption': 'The young boy is dressed in a tie that ... his cake. '}, #  {'image_id': 428, 'id': 284627, #   'caption': 'A child eating a birthday cake near some balloons.'}, #  {'image_id': 428, 'id': 401924, #   'caption': 'A baby eating a cake with a tie ... the background.'}])  cap_val2014_data[179] # (<PIL.Image.Image image mode=RGB size=500x302>, #  [{'image_id': 2299, 'id': 692974, #    'caption': 'Many small children are posing ... white photo. '}, #   {'image_id': 2299, 'id': 693640, #    'caption': 'A vintage school picture of grade school aged children.'}, #   {'image_id': 2299, 'id': 694699, #    'caption': 'A black and white photo of a group of kids.'}, #   {'image_id': 2299, 'id': 697432, #    'caption': 'A group of children standing next to each other.'}, #   {'image_id': 2299, 'id': 698791, #    'caption': 'A group of children standing and ... each other. '}])  cap_val2014_data[194] # (<PIL.Image.Image image mode=RGB size=640x427>, #  [{'image_id': 2562, 'id': 267259, #    'caption': 'A man hitting a tennis ball with a racquet.'}, #   {'image_id': 2562, 'id': 277075, #    'caption': 'champion tennis player swats at the ball ... to win'}, #   {'image_id': 2562, 'id': 279091, #    'caption': 'A man is hitting his tennis ball with ... the court.'}, #   {'image_id': 2562, 'id': 406135, #    'caption': 'a tennis player on a court with a racket'}, #   {'image_id': 2562, 'id': 823086, #    'caption': 'A professional tennis player hits a ... fans watch.'}])  ins_val2014_data[26] # (<PIL.Image.Image image mode=RGB size=640x360>, #  [{'segmentation': [[378.61, 210.2, 409.35, ..., 374.56, 217.48]],  #    'area': 3573.3858000000005, 'iscrowd': 0, 'image_id': 428, #    'bbox': [374.56, 200.49, 94.65, 154.52], 'category_id': 32, #    'id': 293908}, #   {'segmentation': ..., 'category_id': 1, 'id': 487626}, #   {'segmentation': ..., 'category_id': 61, 'id': 1085469}])  ins_val2014_data[179] # (<PIL.Image.Image image mode=RGB size=500x302>, #  [{'segmentation': [[107.49, 226.51, 108.17, ..., 105.8, 226.43]], #    'area': 66.15510000000003, 'iscrowd': 0, 'image_id': 2299, #    'bbox': [101.74, 226.43, 7.53, 15.83], 'category_id': 32, #    'id': 295960}, #   {'segmentation': ..., 'category_id': 32, 'id': 298359}, #   ... #   {'segmentation': {'counts': [152, 13, 263, 40, 2, ..., 132, 75], #    'size': [302, 500]}, 'area': 87090, 'iscrowd': 1, 'image_id': 2299, #    'bbox': [0, 18, 499, 263], 'category_id': 1, 'id': 900100002299}])  ins_val2014_data[194] # (<PIL.Image.Image image mode=RGB size=640x427>, #  [{'segmentation': [[389.92, 6.17, 391.48, ..., 393.57, 0.57]], #    'area': 482.5815999999996, 'iscrowd': 0, 'image_id': 2562, #    'bbox': [389.92, 0.57, 28.15, 21.38], 'category_id': 37, #    'id': 302161}, #   {'segmentation': ..., 'category_id': 43, 'id': 659770}, #   ... #   {'segmentation': {'counts': [132, 8, 370, 37, 3, ..., 82, 268], #    'size': [427, 640]}, 'area': 19849, 'iscrowd': 1, 'image_id': 2562,  #    'bbox': [0, 49, 639, 193], 'category_id': 1, 'id': 900100002562}])  pk_val2014_data[26] # (<PIL.Image.Image image mode=RGB size=640x360>, #  [{'segmentation': [[239.18, 244.08, 229.39, ..., 256.33, 251.43]], #    'num_keypoints': 10, 'area': 55007.0814, 'iscrowd': 0, #    'keypoints': [383, 132, 2, 418, ..., 0, 0], 'image_id': 428, #    'bbox': [226.94, 32.65, 355.92, 323.27], 'category_id': 1, #    'id': 487626}])  pk_val2014_data[179] # (<PIL.Image.Image image mode=RGB size=500x302>, #  [{'segmentation': [[75, 272.02, 76.92, ..., 74.67, 272.66]], #    'num_keypoints': 17, 'area': 4357.5248, 'iscrowd': 0, #    'keypoints': [108, 213, 2, 113, ..., 289, 2], 'image_id': 2299, #    'bbox': [70.18, 189.51, 64.2, 112.04], 'category_id': 1, #    'id': 1219726}, #   {'segmentation': ..., 'category_id': 1, 'id': 1226789}, #   ... #   {'segmentation': {'counts': [152, 13, 263, 40, 2, ..., 132, 75], #    'size': [302, 500]}, 'num_keypoints': 0, 'area': 87090, #    'iscrowd': 1, 'keypoints': [0, 0, 0, 0, ..., 0, 0], 'image_id': 2299, #    'bbox': [0, 18, 499, 263], 'category_id': 1, 'id': 900100002299}])  pk_val2014_data[194] # (<PIL.Image.Image image mode=RGB size=640x427>, #  [{'segmentation': [[19.26, 270.62, 4.3, ..., 25.98, 273.61]], #    'num_keypoints': 13, 'area': 6008.95835, 'iscrowd': 0, #    'keypoints': [60, 160, 2, 64, ..., 257, 1], 'image_id': 2562, #    'bbox': [4.3, 144.26, 100.19, 129.35], 'category_id': 1, #    'id': 1287168}, #   {'segmentation': ..., 'category_id': 1, 'id': 1294190}, #   ... #   {'segmentation': {'counts': [132, 8, 370, 37, 3, ..., 82, 268], #    'size': [427, 640]}, 'num_keypoints': 0, 'area': 19849, 'iscrowd': 1, #    'keypoints': [0, 0, 0, 0, ..., 0, 0], 'image_id': 2562, #    'bbox': [0, 49, 639, 193], 'category_id': 1, 'id': 900100002562}])  test2014_data[26] # (<PIL.Image.Image image mode=RGB size=640x640>, [])  test2014_data[179] # (<PIL.Image.Image image mode=RGB size=640x480>, [])  test2014_data[194] # (<PIL.Image.Image image mode=RGB size=640x360>, [])  test2015_data[26] # (<PIL.Image.Image image mode=RGB size=640x480>, [])  test2015_data[179] # (<PIL.Image.Image image mode=RGB size=640x426>, [])  test2015_data[194] # (<PIL.Image.Image image mode=RGB size=640x480>, [])  testdev2015_data[26] # (<PIL.Image.Image image mode=RGB size=640x360>, [])  testdev2015_data[179] # (<PIL.Image.Image image mode=RGB size=640x480>, [])  testdev2015_data[194] # (<PIL.Image.Image image mode=RGB size=640x480>, [])  import matplotlib.pyplot as plt from matplotlib.patches import Polygon, Rectangle import numpy as np from pycocotools import mask  # `show_images1()` doesn't work very well for the images with # segmentations and keypoints so for them, use `show_images2()` which # more uses the original coco functions.  def show_images1(data, ims, main_title=None):     file = data.root.split('/')[-1]     fig, axes = plt.subplots(nrows=1, ncols=3, figsize=(14, 8))     fig.suptitle(t=main_title, y=0.9, fontsize=14)     x_crd = 0.02     for i, axis in zip(ims, axes.ravel()):         if data[i][1] and "caption" in data[i][1][0]:             im, anns = data[i]             axis.imshow(X=im)             axis.set_title(label=anns[0]["image_id"])             y_crd = 0.0             for ann in anns:                 text_list = ann["caption"].split()                 if len(text_list) > 9:                     text = " ".join(text_list[0:10]) + " ..."                 else:                     text = " ".join(text_list)                 plt.figtext(x=x_crd, y=y_crd, fontsize=10,                             s=f'{ann["id"]}: {text}')                 y_crd -= 0.06             x_crd += 0.325             if i == 2 and file == "val2017":                 x_crd += 0.06         if data[i][1] and "segmentation" in data[i][1][0]:             im, anns = data[i]             axis.imshow(X=im)             axis.set_title(label=anns[0]["image_id"])             for ann in anns:                 if "counts" in ann['segmentation']:                     seg = ann['segmentation']                      # rle is Run Length Encoding.                     uncompressed_rle = [seg['counts']]                     height, width = seg['size']                     compressed_rle = mask.frPyObjects(pyobj=uncompressed_rle,                                                       h=height, w=width)                     # rld is Run Length Decoding.                     compressed_rld = mask.decode(rleObjs=compressed_rle)                     y_plts, x_plts = np.nonzero(a=np.squeeze(a=compressed_rld))                     axis.plot(x_plts, y_plts, color='yellow')                 else:                     for seg in ann['segmentation']:                         seg_arrs = np.split(ary=np.array(seg),                                             indices_or_sections=len(seg)/2)                         poly = Polygon(xy=seg_arrs,                                        facecolor="lightgreen", alpha=0.7)                         axis.add_patch(p=poly)                         x_plts = [seg_arr[0] for seg_arr in seg_arrs]                         y_plts = [seg_arr[1] for seg_arr in seg_arrs]                         axis.plot(x_plts, y_plts, color='yellow')                 x, y, w, h = ann['bbox']                 rect = Rectangle(xy=(x, y), width=w, height=h,                                  linewidth=3, edgecolor='r',                                  facecolor='none', zorder=2)                 axis.add_patch(p=rect)                 if data[i][1] and 'keypoints' in data[i][1][0]:                     kps = ann['keypoints']                     kps_arrs = np.split(ary=np.array(kps),                                         indices_or_sections=len(kps)/3)                     x_plts = [kps_arr[0] for kps_arr in kps_arrs]                     y_plts = [kps_arr[1] for kps_arr in kps_arrs]                     nonzeros_x_plts = []                     nonzeros_y_plts = []                     for x_plt, y_plt in zip(x_plts, y_plts):                         if x_plt == 0 and y_plt == 0:                             continue                         nonzeros_x_plts.append(x_plt)                         nonzeros_y_plts.append(y_plt)                     axis.scatter(x=nonzeros_x_plts, y=nonzeros_y_plts,                                  color='yellow')                     # ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ Bad result ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓                     # axis.plot(nonzeros_x_plts, nonzeros_y_plts)         if not data[i][1]:             im, _ = data[i]             axis.imshow(X=im)     fig.tight_layout()     plt.show()  ims = (26, 179, 194)  show_images1(data=cap_train2014_data, ims=ims,              main_title="cap_train2014_data") show_images1(data=ins_train2014_data, ims=ims,              main_title="ins_train2014_data") show_images1(data=pk_train2014_data, ims=ims,              main_title="pk_train2014_data") print() show_images1(data=cap_val2014_data, ims=ims,               main_title="cap_val2014_data") show_images1(data=ins_val2014_data, ims=ims,               main_title="ins_val2014_data") show_images1(data=pk_val2014_data, ims=ims,              main_title="pk_val2014_data") print() show_images1(data=test2014_data, ims=ims,              main_title="test2014_data") show_images1(data=test2015_data, ims=ims,              main_title="test2015_data") show_images1(data=testdev2015_data, ims=ims,              main_title="testdev2015_data")  # `show_images2()` works very well for the images with segmentations and # keypoints. def show_images2(data, index, main_title=None):     img_set = data[index]     img, img_anns = img_set      if img_anns and "segmentation" in img_anns[0]:         img_id = img_anns[0]['image_id']         coco = data.coco         def show_image(imgIds, areaRng=[],                        iscrowd=None, draw_bbox=False):             plt.figure(figsize=(11, 6))             plt.imshow(X=img)             plt.suptitle(t=main_title, y=1, fontsize=14)             plt.title(label=img_id, fontsize=14)             anns_ids = coco.getAnnIds(imgIds=img_id,                                       areaRng=areaRng, iscrowd=iscrowd)             anns = coco.loadAnns(ids=anns_ids)             coco.showAnns(anns=anns, draw_bbox=draw_bbox)             plt.show()         show_image(imgIds=img_id, draw_bbox=True)         show_image(imgIds=img_id, draw_bbox=False)         show_image(imgIds=img_id, iscrowd=False, draw_bbox=True)         show_image(imgIds=img_id, areaRng=[0, 5000], draw_bbox=True)     elif img_anns and not "segmentation" in img_anns[0]:         plt.figure(figsize=(11, 6))         img_id = img_anns[0]['image_id']         plt.imshow(X=img)         plt.suptitle(t=main_title, y=1, fontsize=14)         plt.title(label=img_id, fontsize=14)         plt.show()     elif not img_anns:         plt.figure(figsize=(11, 6))         plt.imshow(X=img)         plt.suptitle(t=main_title, y=1, fontsize=14)         plt.show() show_images2(data=ins_val2014_data, index=179,              main_title="ins_val2014_data") print() show_images2(data=pk_val2014_data, index=179,              main_title="pk_val2014_data") print() show_images2(data=ins_val2014_data, index=194,              main_title="ins_val2014_data") print() show_images2(data=pk_val2014_data, index=194,              main_title="pk_val2014_data") 
登录后复制

显示_图像1():

PyTorch 中的 CocoDetection (1)

PyTorch 中的 CocoDetection (1)

PyTorch 中的 CocoDetection (1)


PyTorch 中的 CocoDetection (1)

PyTorch 中的 CocoDetection (1)

PyTorch 中的 CocoDetection (1)


PyTorch 中的 CocoDetection (1)

PyTorch 中的 CocoDetection (1)

PyTorch 中的 CocoDetection (1)

显示图像2():

PyTorch 中的 CocoDetection (1)

PyTorch 中的 CocoDetection (1)

PyTorch 中的 CocoDetection (1)

PyTorch 中的 CocoDetection (1)


PyTorch 中的 CocoDetection (1)

PyTorch 中的 CocoDetection (1)

PyTorch 中的 CocoDetection (1)

PyTorch 中的 CocoDetection (1)


PyTorch 中的 CocoDetection (1)

PyTorch 中的 CocoDetection (1)

PyTorch 中的 CocoDetection (1)

PyTorch 中的 CocoDetection (1)


PyTorch 中的 CocoDetection (1)

PyTorch 中的 CocoDetection (1)

PyTorch 中的 CocoDetection (1)

PyTorch 中的 CocoDetection (1)

以上就是PyTorch 中的 CocoDetection (1)的详细内容,更多请关注php中文网其它相关文章!

本文来自网络,不代表甲倪知识立场,转载请注明出处:http://www.spjiani.cn/wp/7701.html

作者: nijia

发表评论

您的电子邮箱地址不会被公开。

联系我们

联系我们

0898-88881688

在线咨询: QQ交谈

邮箱: email@wangzhan.com

工作时间:周一至周五,9:00-17:30,节假日休息

关注微信
微信扫一扫关注我们

微信扫一扫关注我们

关注微博
返回顶部