请我喝杯咖啡☕
*备忘录:
- 我的帖子解释了cocodetection()使用trn2017与captions_train2017.json,instances_train2017.json和person_keypoints_train2017.json,val2017与captions_val2017.json,instances_val2017.json和person_keypoints_val2017.json和test2017与image_info_test2017.json和image_info_test-dev2017.json.
- 我的帖子解释了 ms coco。
cocodetection() 可以使用 ms coco 数据集,如下所示。 *这适用于带有captions_train2014.json、instances_train2014.json和person_keypoints_train2014.json的train2014,带有captions_val2014.json、instances_val2014.json和person_keypoints_val2014.json的val2014以及带有image_info_test2014.json、image_info_test2015.json和的test2017 image_info_test-dev2015.json:
*备忘录:
- 第一个参数是root(必需类型:str或pathlib.path): *备注:
- 这是图像的路径。
- 绝对或相对路径都是可能的。
- 第二个参数是 annfile(必需类型:str 或 pathlib.path): *备注:
- 这是注释的路径。
- 绝对或相对路径都是可能的。
- 第三个参数是transform(optional-default:none-type:callable)。
- 第四个参数是 target_transform(optional-default:none-type:callable)。
- 第五个参数是transforms(optional-default:none-type:callable)。
from torchvision.datasets import CocoDetection cap_train2014_data = CocoDetection( root="data/coco/imgs/train2014", annFile="data/coco/anns/trainval2014/captions_train2014.json" ) cap_train2014_data = CocoDetection( root="data/coco/imgs/train2014", annFile="data/coco/anns/trainval2014/captions_train2014.json", transform=None, target_transform=None, transforms=None ) ins_train2014_data = CocoDetection( root="data/coco/imgs/train2014", annFile="data/coco/anns/trainval2014/instances_train2014.json" ) pk_train2014_data = CocoDetection( root="data/coco/imgs/train2014", annFile="data/coco/anns/trainval2014/person_keypoints_train2014.json" ) len(cap_train2014_data), len(ins_train2014_data), len(pk_train2014_data) # (82783, 82783, 82783) cap_val2014_data = CocoDetection( root="data/coco/imgs/val2014", annFile="data/coco/anns/trainval2014/captions_val2014.json" ) ins_val2014_data = CocoDetection( root="data/coco/imgs/val2014", annFile="data/coco/anns/trainval2014/instances_val2014.json" ) pk_val2014_data = CocoDetection( root="data/coco/imgs/val2014", annFile="data/coco/anns/trainval2014/person_keypoints_val2014.json" ) len(cap_val2014_data), len(ins_val2014_data), len(pk_val2014_data) # (40504, 40504, 40504) test2014_data = CocoDetection( root="data/coco/imgs/test2014", annFile="data/coco/anns/test2014/image_info_test2014.json" ) test2015_data = CocoDetection( root="data/coco/imgs/test2015", annFile="data/coco/anns/test2015/image_info_test2015.json" ) testdev2015_data = CocoDetection( root="data/coco/imgs/test2015", annFile="data/coco/anns/test2015/image_info_test-dev2015.json" ) len(test2014_data), len(test2015_data), len(testdev2015_data) # (40775, 81434, 20288) cap_train2014_data # Dataset CocoDetection # Number of datapoints: 82783 # Root location: data/coco/imgs/train2014 cap_train2014_data.root # 'data/coco/imgs/train2014' print(cap_train2014_data.transform) # None print(cap_train2014_data.target_transform) # None print(cap_train2014_data.transforms) # None cap_train2014_data.coco # <pycocotools.coco.COCO at 0x7c8a5f09d4f0> cap_train2014_data[26] # (<PIL.Image.Image image mode=RGB size=427x640>, # [{'image_id': 154, 'id': 202466, # 'caption': 'three zeebras standing in a grassy field walking'}, # {'image_id': 154, 'id': 211904, # 'caption': 'Three zebras are standing in an open field.'}, # {'image_id': 154, 'id': 215654, # 'caption': 'Three zebra are walking through the grass of a field.'}, # {'image_id': 154, 'id': 216620, # 'caption': 'Three zebras standing on a grassy dirt field.'}, # {'image_id': 154, 'id': 231686, # 'caption': 'Three zebras grazing in green grass field area.'}]) cap_train2014_data[179] # (<PIL.Image.Image image mode=RGB size=480x640>, # [{'image_id': 1330, 'id': 721877, # 'caption': 'a young guy walking in a forrest holding ... his hand'}, # {'image_id': 1330, 'id': 727442, # 'caption': 'A partially black and white photo of a ... the woods.'}, # {'image_id': 1330, 'id': 730133, # 'caption': 'A disc golfer releases a throw ... wooded course.'}, # {'image_id': 1330, 'id': 731450, # 'caption': 'The person is in the clearing of a wooded area. '}, # {'image_id': 1330, 'id': 732335, # 'caption': 'a person throwing a frisbee at many trees '}]) cap_train2014_data[194] # (<PIL.Image.Image image mode=RGB size=428x640>, # [{'image_id': 1407, 'id': 451510, # 'caption': 'A person on a court with a tennis racket.'}, # {'image_id': 1407, 'id': 457735, # 'caption': 'A man that is holding a racquet ... the grass.'}, # {'image_id': 1407, 'id': 460600, # 'caption': 'A tennis player hits the ball during a match.'}, # {'image_id': 1407, 'id': 460612, # 'caption': 'The tennis player is poised to serve a ball.'}, # {'image_id': 1407, 'id': 821947, # 'caption': 'Man in white playing tennis on a court.'}]) ins_train2014_data[26] # (<PIL.Image.Image image mode=RGB size=427x640>, # [{'segmentation': [[229.5, 618.18, 235.64, ..., 219.85, 618.18]], # 'area': 53702.50415, 'iscrowd': 0, 'image_id': 154, # 'bbox': [11.98, 315.59, 349.08, 324.41], 'category_id': 24, # 'id': 590410}, # {'segmentation': ..., 'category_id': 24, 'id': 590623}, # {'segmentation': ..., 'category_id': 24, 'id': 593205}]) ins_train2014_data[179] # (<PIL.Image.Image image mode=RGB size=480x640>, # [{'segmentation': [[160.87, 574.0, 174.15, ..., 162.77, 577.6]], # 'area': 21922.32225, 'iscrowd': 0, 'image_id': 1330, # 'bbox': [38.47, 228.02, 249.55, 349.58], 'category_id': 1, # 'id': 497247}, # {'segmentation': ..., 'category_id': 34, 'id': 604179}]) ins_train2014_data[194] # (<PIL.Image.Image image mode=RGB size=428x640>, # [{'segmentation': [[203.26, 465.95, 215.13, ..., 207.22, 466.94]], # 'area': 20449.62315, 'iscrowd': 0, 'image_id': 1407, # 'bbox': [138.97, 198.88, 175.08, 355.11], 'category_id': 1, # 'id': 434962}, # {'segmentation': ..., 'category_id': 43, 'id': 658155}, # ... # {'segmentation': ..., 'category_id': 1, 'id': 2000535}]) pk_train2014_data[26] # (<PIL.Image.Image image mode=RGB size=427x640>, []) pk_train2014_data[179] # (<PIL.Image.Image image mode=RGB size=480x640>, # [{'segmentation': [[160.87, 574, 174.15, ..., 162.77, 577.6]], # 'num_keypoints': 14, 'area': 21922.32225, 'iscrowd': 0, # 'keypoints': [0, 0, 0, 0, ..., 510, 2], 'image_id': 1330, # 'bbox': [38.47, 228.02, 249.55, 349.58], 'category_id': 1, # 'id': 497247}]) pk_train2014_data[194] # (<PIL.Image.Image image mode=RGB size=428x640>, # [{'segmentation': [[203.26, 465.95, 215.13, ..., 207.22, 466.94]], # 'num_keypoints': 16, 'area': 20449.62315, 'iscrowd': 0, # 'keypoints': [243, 289, 2, 247, ..., 516, 2], 'image_id': 1407, # 'bbox': [138.97, 198.88, 175.08, 355.11], 'category_id': 1, # 'id': 434962}, # {'segmentation': ..., 'category_id': 1, 'id': 1246131}, # ... # {'segmentation': ..., 'category_id': 1, 'id': 2000535}]) cap_val2014_data[26] # (<PIL.Image.Image image mode=RGB size=640x360>, # [{'image_id': 428, 'id': 281051, # 'caption': 'a close up of a child next to a cake with balloons'}, # {'image_id': 428, 'id': 283808, # 'caption': 'A baby sitting in front of a cake wearing a tie.'}, # {'image_id': 428, 'id': 284135, # 'caption': 'The young boy is dressed in a tie that ... his cake. '}, # {'image_id': 428, 'id': 284627, # 'caption': 'A child eating a birthday cake near some balloons.'}, # {'image_id': 428, 'id': 401924, # 'caption': 'A baby eating a cake with a tie ... the background.'}]) cap_val2014_data[179] # (<PIL.Image.Image image mode=RGB size=500x302>, # [{'image_id': 2299, 'id': 692974, # 'caption': 'Many small children are posing ... white photo. '}, # {'image_id': 2299, 'id': 693640, # 'caption': 'A vintage school picture of grade school aged children.'}, # {'image_id': 2299, 'id': 694699, # 'caption': 'A black and white photo of a group of kids.'}, # {'image_id': 2299, 'id': 697432, # 'caption': 'A group of children standing next to each other.'}, # {'image_id': 2299, 'id': 698791, # 'caption': 'A group of children standing and ... each other. '}]) cap_val2014_data[194] # (<PIL.Image.Image image mode=RGB size=640x427>, # [{'image_id': 2562, 'id': 267259, # 'caption': 'A man hitting a tennis ball with a racquet.'}, # {'image_id': 2562, 'id': 277075, # 'caption': 'champion tennis player swats at the ball ... to win'}, # {'image_id': 2562, 'id': 279091, # 'caption': 'A man is hitting his tennis ball with ... the court.'}, # {'image_id': 2562, 'id': 406135, # 'caption': 'a tennis player on a court with a racket'}, # {'image_id': 2562, 'id': 823086, # 'caption': 'A professional tennis player hits a ... fans watch.'}]) ins_val2014_data[26] # (<PIL.Image.Image image mode=RGB size=640x360>, # [{'segmentation': [[378.61, 210.2, 409.35, ..., 374.56, 217.48]], # 'area': 3573.3858000000005, 'iscrowd': 0, 'image_id': 428, # 'bbox': [374.56, 200.49, 94.65, 154.52], 'category_id': 32, # 'id': 293908}, # {'segmentation': ..., 'category_id': 1, 'id': 487626}, # {'segmentation': ..., 'category_id': 61, 'id': 1085469}]) ins_val2014_data[179] # (<PIL.Image.Image image mode=RGB size=500x302>, # [{'segmentation': [[107.49, 226.51, 108.17, ..., 105.8, 226.43]], # 'area': 66.15510000000003, 'iscrowd': 0, 'image_id': 2299, # 'bbox': [101.74, 226.43, 7.53, 15.83], 'category_id': 32, # 'id': 295960}, # {'segmentation': ..., 'category_id': 32, 'id': 298359}, # ... # {'segmentation': {'counts': [152, 13, 263, 40, 2, ..., 132, 75], # 'size': [302, 500]}, 'area': 87090, 'iscrowd': 1, 'image_id': 2299, # 'bbox': [0, 18, 499, 263], 'category_id': 1, 'id': 900100002299}]) ins_val2014_data[194] # (<PIL.Image.Image image mode=RGB size=640x427>, # [{'segmentation': [[389.92, 6.17, 391.48, ..., 393.57, 0.57]], # 'area': 482.5815999999996, 'iscrowd': 0, 'image_id': 2562, # 'bbox': [389.92, 0.57, 28.15, 21.38], 'category_id': 37, # 'id': 302161}, # {'segmentation': ..., 'category_id': 43, 'id': 659770}, # ... # {'segmentation': {'counts': [132, 8, 370, 37, 3, ..., 82, 268], # 'size': [427, 640]}, 'area': 19849, 'iscrowd': 1, 'image_id': 2562, # 'bbox': [0, 49, 639, 193], 'category_id': 1, 'id': 900100002562}]) pk_val2014_data[26] # (<PIL.Image.Image image mode=RGB size=640x360>, # [{'segmentation': [[239.18, 244.08, 229.39, ..., 256.33, 251.43]], # 'num_keypoints': 10, 'area': 55007.0814, 'iscrowd': 0, # 'keypoints': [383, 132, 2, 418, ..., 0, 0], 'image_id': 428, # 'bbox': [226.94, 32.65, 355.92, 323.27], 'category_id': 1, # 'id': 487626}]) pk_val2014_data[179] # (<PIL.Image.Image image mode=RGB size=500x302>, # [{'segmentation': [[75, 272.02, 76.92, ..., 74.67, 272.66]], # 'num_keypoints': 17, 'area': 4357.5248, 'iscrowd': 0, # 'keypoints': [108, 213, 2, 113, ..., 289, 2], 'image_id': 2299, # 'bbox': [70.18, 189.51, 64.2, 112.04], 'category_id': 1, # 'id': 1219726}, # {'segmentation': ..., 'category_id': 1, 'id': 1226789}, # ... # {'segmentation': {'counts': [152, 13, 263, 40, 2, ..., 132, 75], # 'size': [302, 500]}, 'num_keypoints': 0, 'area': 87090, # 'iscrowd': 1, 'keypoints': [0, 0, 0, 0, ..., 0, 0], 'image_id': 2299, # 'bbox': [0, 18, 499, 263], 'category_id': 1, 'id': 900100002299}]) pk_val2014_data[194] # (<PIL.Image.Image image mode=RGB size=640x427>, # [{'segmentation': [[19.26, 270.62, 4.3, ..., 25.98, 273.61]], # 'num_keypoints': 13, 'area': 6008.95835, 'iscrowd': 0, # 'keypoints': [60, 160, 2, 64, ..., 257, 1], 'image_id': 2562, # 'bbox': [4.3, 144.26, 100.19, 129.35], 'category_id': 1, # 'id': 1287168}, # {'segmentation': ..., 'category_id': 1, 'id': 1294190}, # ... # {'segmentation': {'counts': [132, 8, 370, 37, 3, ..., 82, 268], # 'size': [427, 640]}, 'num_keypoints': 0, 'area': 19849, 'iscrowd': 1, # 'keypoints': [0, 0, 0, 0, ..., 0, 0], 'image_id': 2562, # 'bbox': [0, 49, 639, 193], 'category_id': 1, 'id': 900100002562}]) test2014_data[26] # (<PIL.Image.Image image mode=RGB size=640x640>, []) test2014_data[179] # (<PIL.Image.Image image mode=RGB size=640x480>, []) test2014_data[194] # (<PIL.Image.Image image mode=RGB size=640x360>, []) test2015_data[26] # (<PIL.Image.Image image mode=RGB size=640x480>, []) test2015_data[179] # (<PIL.Image.Image image mode=RGB size=640x426>, []) test2015_data[194] # (<PIL.Image.Image image mode=RGB size=640x480>, []) testdev2015_data[26] # (<PIL.Image.Image image mode=RGB size=640x360>, []) testdev2015_data[179] # (<PIL.Image.Image image mode=RGB size=640x480>, []) testdev2015_data[194] # (<PIL.Image.Image image mode=RGB size=640x480>, []) import matplotlib.pyplot as plt from matplotlib.patches import Polygon, Rectangle import numpy as np from pycocotools import mask # `show_images1()` doesn't work very well for the images with # segmentations and keypoints so for them, use `show_images2()` which # more uses the original coco functions. def show_images1(data, ims, main_title=None): file = data.root.split('/')[-1] fig, axes = plt.subplots(nrows=1, ncols=3, figsize=(14, 8)) fig.suptitle(t=main_title, y=0.9, fontsize=14) x_crd = 0.02 for i, axis in zip(ims, axes.ravel()): if data[i][1] and "caption" in data[i][1][0]: im, anns = data[i] axis.imshow(X=im) axis.set_title(label=anns[0]["image_id"]) y_crd = 0.0 for ann in anns: text_list = ann["caption"].split() if len(text_list) > 9: text = " ".join(text_list[0:10]) + " ..." else: text = " ".join(text_list) plt.figtext(x=x_crd, y=y_crd, fontsize=10, s=f'{ann["id"]}: {text}') y_crd -= 0.06 x_crd += 0.325 if i == 2 and file == "val2017": x_crd += 0.06 if data[i][1] and "segmentation" in data[i][1][0]: im, anns = data[i] axis.imshow(X=im) axis.set_title(label=anns[0]["image_id"]) for ann in anns: if "counts" in ann['segmentation']: seg = ann['segmentation'] # rle is Run Length Encoding. uncompressed_rle = [seg['counts']] height, width = seg['size'] compressed_rle = mask.frPyObjects(pyobj=uncompressed_rle, h=height, w=width) # rld is Run Length Decoding. compressed_rld = mask.decode(rleObjs=compressed_rle) y_plts, x_plts = np.nonzero(a=np.squeeze(a=compressed_rld)) axis.plot(x_plts, y_plts, color='yellow') else: for seg in ann['segmentation']: seg_arrs = np.split(ary=np.array(seg), indices_or_sections=len(seg)/2) poly = Polygon(xy=seg_arrs, facecolor="lightgreen", alpha=0.7) axis.add_patch(p=poly) x_plts = [seg_arr[0] for seg_arr in seg_arrs] y_plts = [seg_arr[1] for seg_arr in seg_arrs] axis.plot(x_plts, y_plts, color='yellow') x, y, w, h = ann['bbox'] rect = Rectangle(xy=(x, y), width=w, height=h, linewidth=3, edgecolor='r', facecolor='none', zorder=2) axis.add_patch(p=rect) if data[i][1] and 'keypoints' in data[i][1][0]: kps = ann['keypoints'] kps_arrs = np.split(ary=np.array(kps), indices_or_sections=len(kps)/3) x_plts = [kps_arr[0] for kps_arr in kps_arrs] y_plts = [kps_arr[1] for kps_arr in kps_arrs] nonzeros_x_plts = [] nonzeros_y_plts = [] for x_plt, y_plt in zip(x_plts, y_plts): if x_plt == 0 and y_plt == 0: continue nonzeros_x_plts.append(x_plt) nonzeros_y_plts.append(y_plt) axis.scatter(x=nonzeros_x_plts, y=nonzeros_y_plts, color='yellow') # ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ Bad result ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ # axis.plot(nonzeros_x_plts, nonzeros_y_plts) if not data[i][1]: im, _ = data[i] axis.imshow(X=im) fig.tight_layout() plt.show() ims = (26, 179, 194) show_images1(data=cap_train2014_data, ims=ims, main_title="cap_train2014_data") show_images1(data=ins_train2014_data, ims=ims, main_title="ins_train2014_data") show_images1(data=pk_train2014_data, ims=ims, main_title="pk_train2014_data") print() show_images1(data=cap_val2014_data, ims=ims, main_title="cap_val2014_data") show_images1(data=ins_val2014_data, ims=ims, main_title="ins_val2014_data") show_images1(data=pk_val2014_data, ims=ims, main_title="pk_val2014_data") print() show_images1(data=test2014_data, ims=ims, main_title="test2014_data") show_images1(data=test2015_data, ims=ims, main_title="test2015_data") show_images1(data=testdev2015_data, ims=ims, main_title="testdev2015_data") # `show_images2()` works very well for the images with segmentations and # keypoints. def show_images2(data, index, main_title=None): img_set = data[index] img, img_anns = img_set if img_anns and "segmentation" in img_anns[0]: img_id = img_anns[0]['image_id'] coco = data.coco def show_image(imgIds, areaRng=[], iscrowd=None, draw_bbox=False): plt.figure(figsize=(11, 6)) plt.imshow(X=img) plt.suptitle(t=main_title, y=1, fontsize=14) plt.title(label=img_id, fontsize=14) anns_ids = coco.getAnnIds(imgIds=img_id, areaRng=areaRng, iscrowd=iscrowd) anns = coco.loadAnns(ids=anns_ids) coco.showAnns(anns=anns, draw_bbox=draw_bbox) plt.show() show_image(imgIds=img_id, draw_bbox=True) show_image(imgIds=img_id, draw_bbox=False) show_image(imgIds=img_id, iscrowd=False, draw_bbox=True) show_image(imgIds=img_id, areaRng=[0, 5000], draw_bbox=True) elif img_anns and not "segmentation" in img_anns[0]: plt.figure(figsize=(11, 6)) img_id = img_anns[0]['image_id'] plt.imshow(X=img) plt.suptitle(t=main_title, y=1, fontsize=14) plt.title(label=img_id, fontsize=14) plt.show() elif not img_anns: plt.figure(figsize=(11, 6)) plt.imshow(X=img) plt.suptitle(t=main_title, y=1, fontsize=14) plt.show() show_images2(data=ins_val2014_data, index=179, main_title="ins_val2014_data") print() show_images2(data=pk_val2014_data, index=179, main_title="pk_val2014_data") print() show_images2(data=ins_val2014_data, index=194, main_title="ins_val2014_data") print() show_images2(data=pk_val2014_data, index=194, main_title="pk_val2014_data")
登录后复制
显示_图像1():
显示图像2():
以上就是PyTorch 中的 CocoDetection (1)的详细内容,更多请关注php中文网其它相关文章!