给我买咖啡☕
*备忘录:
- 我的帖子解释了牛津iiitpet()。
> randomposterize()可以随机将带有给定概率的图像随机寄电,如下所示:
*备忘录:
- 初始化的第一个参数是位(必需类型:int): *备忘录:
- >是每个频道要保留的位数。
- 它必须是x
>
-
- 这是图像是否被后代的概率。
- >
必须为0
初始化的第一个参数是p(可选默认:0.5-type:int或float): *备忘录:
第一个参数是img(必需类型:pil图像或张量(int)): *备忘录:
- 不使用img =。
建议根据v1或v2使用v2?我应该使用哪一个?
from torchvision.datasets import OxfordIIITPet from torchvision.transforms.v2 import RandomPosterize randomposterize = RandomPosterize(bits=1) randomposterize = RandomPosterize(bits=1, p=0.5) randomposterize # RandomPosterize(p=0.5, bits=1) randomposterize.bits # 1 randomposterize.p # 0.5 origin_data = OxfordIIITPet( root="data", transform=None ) b8p1origin_data = OxfordIIITPet( root="data", transform=RandomPosterize(bits=8, p=1) ) b7p1_data = OxfordIIITPet( root="data", transform=RandomPosterize(bits=7, p=1) ) b6p1_data = OxfordIIITPet( root="data", transform=RandomPosterize(bits=6, p=1) ) b5p1_data = OxfordIIITPet( root="data", transform=RandomPosterize(bits=5, p=1) ) b4p1_data = OxfordIIITPet( root="data", transform=RandomPosterize(bits=4, p=1) ) b3p1_data = OxfordIIITPet( root="data", transform=RandomPosterize(bits=3, p=1) ) b2p1_data = OxfordIIITPet( root="data", transform=RandomPosterize(bits=2, p=1) ) b1p1_data = OxfordIIITPet( root="data", transform=RandomPosterize(bits=1, p=1) ) b0p1_data = OxfordIIITPet( root="data", transform=RandomPosterize(bits=0, p=1) ) bn1p1_data = OxfordIIITPet( root="data", transform=RandomPosterize(bits=-1, p=1) ) bn10p1_data = OxfordIIITPet( root="data", transform=RandomPosterize(bits=-10, p=1) ) bn100p1_data = OxfordIIITPet( root="data", transform=RandomPosterize(bits=-100, p=1) ) b1p0_data = OxfordIIITPet( root="data", transform=RandomPosterize(bits=1, p=0) ) b1p05_data = OxfordIIITPet( root="data", transform=RandomPosterize(bits=1, p=0.5) # transform=RandomPosterize(bits=1) ) import matplotlib.pyplot as plt def show_images1(data, main_title=None): plt.figure(figsize=[10, 5]) plt.suptitle(t=main_title, y=0.8, fontsize=14) for i, (im, _) in zip(range(1, 6), data): plt.subplot(1, 5, i) plt.imshow(X=im) plt.xticks(ticks=[]) plt.yticks(ticks=[]) plt.tight_layout() plt.show() show_images1(data=origin_data, main_title="origin_data") print() show_images1(data=b8p1origin_data, main_title="b8p1origin_data") show_images1(data=b7p1_data, main_title="b7p1_data") show_images1(data=b6p1_data, main_title="b6p1_data") show_images1(data=b5p1_data, main_title="b5p1_data") show_images1(data=b4p1_data, main_title="b4p1_data") show_images1(data=b3p1_data, main_title="b3p1_data") show_images1(data=b2p1_data, main_title="b2p1_data") show_images1(data=b1p1_data, main_title="b1p1_data") show_images1(data=b0p1_data, main_title="b0p1_data") show_images1(data=bn1p1_data, main_title="bn1p1_data") show_images1(data=bn10p1_data, main_title="bn10p1_data") show_images1(data=bn100p1_data, main_title="bn100p1_data") print() show_images1(data=b1p0_data, main_title="b1p0_data") show_images1(data=b1p0_data, main_title="b1p0_data") show_images1(data=b1p0_data, main_title="b1p0_data") print() show_images1(data=b1p05_data, main_title="b1p05_data") show_images1(data=b1p05_data, main_title="b1p05_data") show_images1(data=b1p05_data, main_title="b1p05_data") print() show_images1(data=b1p1_data, main_title="b1p1_data") show_images1(data=b1p1_data, main_title="b1p1_data") show_images1(data=b1p1_data, main_title="b1p1_data") # ↓ ↓ ↓ ↓ ↓ ↓ The code below is identical to the code above. ↓ ↓ ↓ ↓ ↓ ↓ def show_images2(data, main_title=None, b=None, prob=0): plt.figure(figsize=[10, 5]) plt.suptitle(t=main_title, y=0.8, fontsize=14) if b != None: for i, (im, _) in zip(range(1, 6), data): plt.subplot(1, 5, i) rp = RandomPosterize(bits=b, p=prob) plt.imshow(X=rp(im)) plt.xticks(ticks=[]) plt.yticks(ticks=[]) else: for i, (im, _) in zip(range(1, 6), data): plt.subplot(1, 5, i) plt.imshow(X=im) plt.xticks(ticks=[]) plt.yticks(ticks=[]) plt.tight_layout() plt.show() show_images2(data=origin_data, main_title="origin_data") print() show_images2(data=origin_data, main_title="b8p1origin_data", b=8, prob=1) show_images2(data=origin_data, main_title="b7p1_data", b=7, prob=1) show_images2(data=origin_data, main_title="b6p1_data", b=6, prob=1) show_images2(data=origin_data, main_title="b5p1_data", b=5, prob=1) show_images2(data=origin_data, main_title="b4p1_data", b=4, prob=1) show_images2(data=origin_data, main_title="b3p1_data", b=3, prob=1) show_images2(data=origin_data, main_title="b2p1_data", b=2, prob=1) show_images2(data=origin_data, main_title="b1p1_data", b=1, prob=1) show_images2(data=origin_data, main_title="b0p1_data", b=0, prob=1) show_images2(data=origin_data, main_title="bn1p1_data", b=-1, prob=1) show_images2(data=origin_data, main_title="bn10p1_data", b=-10, prob=1) show_images2(data=origin_data, main_title="bn100p1_data", b=-100, prob=1) print() show_images2(data=origin_data, main_title="b1p0_data", b=1, prob=0) show_images2(data=origin_data, main_title="b1p0_data", b=1, prob=0) show_images2(data=origin_data, main_title="b1p0_data", b=1, prob=0) print() show_images2(data=origin_data, main_title="b1p05_data", b=1, prob=0.5) show_images2(data=origin_data, main_title="b1p05_data", b=1, prob=0.5) show_images2(data=origin_data, main_title="b1p05_data", b=1, prob=0.5) print() show_images2(data=origin_data, main_title="b1p1_data", b=1, prob=1) show_images2(data=origin_data, main_title="b1p1_data", b=1, prob=1) show_images2(data=origin_data, main_title="b1p1_data", b=1, prob=1)
登录后复制
以上就是在pytorch中进行杂乱无章的详细内容,更多请关注php中文网其它相关文章!