您的位置 首页 知识分享

我要求DeepSeek编码我的python,这是没有人制作的

高级脚本:带有实时可视化的驱动网络异常检测器 此脚本组合: 使用scapy的实时网络流量分析。 使用sciki…

高级脚本:带有实时可视化的驱动网络异常检测器

此脚本组合:

使用scapy的实时网络流量分析。

使用scikit-learn。

基于机器学习的异常检测。 使用matplotlib和plotly。

使用大熊猫和电子邮件库的自动报告。>

脚本监视网络流量,检测异常(例如,不寻常的流量模式),并生成实时可视化和电子邮件警报。

import time import pandas as pd import numpy as np from scapy.all import sniff, IP, TCP from sklearn.ensemble import IsolationForest import matplotlib.pyplot as plt import plotly.express as px import smtplib from email.mime.text import MIMEText from email.mime.multipart import MIMEMultipart from threading import Thread  # Global variables network_data = [] anomalies = [] model = IsolationForest(contamination=0.01)  # Anomaly detection model  # Email configuration EMAIL_HOST = 'smtp.gmail.com' EMAIL_PORT = 587 EMAIL_USER = 'your_email@gmail.com' EMAIL_PASSWORD = 'your_password' ALERT_EMAIL = 'recipient_email@example.com'  def capture_traffic(packet):     """     Capture network traffic and extract features.     """     if IP in packet:         src_ip = packet[IP].src         dst_ip = packet[IP].dst         protocol = packet[IP].proto         length = len(packet)         timestamp = time.time()          # Append to network data         network_data.append([timestamp, src_ip, dst_ip, protocol, length])  def detect_anomalies():     """     Detect anomalies in network traffic using Isolation Forest.     """     global network_data, anomalies     while True:         if len(network_data) > 100:  # Wait for enough data             df = pd.DataFrame(network_data, columns=['timestamp', 'src_ip', 'dst_ip', 'protocol', 'length'])             X = df[['protocol', 'length']].values              # Train the model and predict anomalies             model.fit(X)             preds = model.predict(X)             df['anomaly'] = preds              # Extract anomalies             anomalies = df[df['anomaly'] == -1]             if not anomalies.empty:                 print("Anomalies detected:")                 print(anomalies)                 send_alert_email(anomalies)                 visualize_anomalies(anomalies)              # Clear old data             network_data = network_data[-100:]  # Keep last 100 entries         time.sleep(10)  # Check for anomalies every 10 seconds  def visualize_anomalies(anomalies):     """     Visualize anomalies using Plotly.     """     fig = px.scatter(anomalies, x='timestamp', y='length', color='protocol',                      title='Network Anomalies Detected')     fig.show()  def send_alert_email(anomalies):     """     Send an email alert with detected anomalies.     """     msg = MIMEMultipart()     msg['From'] = EMAIL_USER     msg['To'] = ALERT_EMAIL     msg['Subject'] = 'Network Anomaly Alert'      body = "The following network anomalies were detected:  "     body += anomalies.to_string()     msg.attach(MIMEText(body, 'plain'))      try:         server = smtplib.SMTP(EMAIL_HOST, EMAIL_PORT)         server.starttls()         server.login(EMAIL_USER, EMAIL_PASSWORD)         server.sendmail(EMAIL_USER, ALERT_EMAIL, msg.as_string())         server.quit()         print("Alert email sent.")     except Exception as e:         print(f"Failed to send email: {e}")  def start_capture():     """     Start capturing network traffic.     """     print("Starting network traffic capture...")     sniff(prn=capture_traffic, store=False)  if __name__ == "__main__":     # Start traffic capture in a separate thread     capture_thread = Thread(target=start_capture)     capture_thread.daemon = True     capture_thread.start()      # Start anomaly detection     detect_anomalies() 
登录后复制

它的工作原理

网络流量捕获:

>脚本使用scapy捕获实时网络流量并提取源ip,目标ip,协议和数据包长度等功能。

>异常检测:

>它使用scikit-learn的隔离森林算法来检测网络流量中的异常模式。

实时可视化:

使用plotly实时可视化检测到的异常。

>

电子邮件警报:

如果检测到异常,则脚本将发送带有详细信息的电子邮件警报。

多线程:

流量捕获和异常检测在单独的线程中运行以提高效率。>

以上就是我要求DeepSeek编码我的,这是没有人制作的的详细内容,更多请关注php中文网其它相关文章!

本文来自网络,不代表甲倪知识立场,转载请注明出处:http://www.spjiani.cn/wp/8700.html

作者: nijia

发表评论

您的电子邮箱地址不会被公开。

联系我们

联系我们

0898-88881688

在线咨询: QQ交谈

邮箱: email@wangzhan.com

工作时间:周一至周五,9:00-17:30,节假日休息

关注微信
微信扫一扫关注我们

微信扫一扫关注我们

关注微博
返回顶部